If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 0 = -18v2 + 1476v + -26600 Reorder the terms: 0 = -26600 + 1476v + -18v2 Solving 0 = -26600 + 1476v + -18v2 Solving for variable 'v'. Combine like terms: 0 + 26600 = 26600 26600 + -1476v + 18v2 = -26600 + 1476v + -18v2 + 26600 + -1476v + 18v2 Reorder the terms: 26600 + -1476v + 18v2 = -26600 + 26600 + 1476v + -1476v + -18v2 + 18v2 Combine like terms: -26600 + 26600 = 0 26600 + -1476v + 18v2 = 0 + 1476v + -1476v + -18v2 + 18v2 26600 + -1476v + 18v2 = 1476v + -1476v + -18v2 + 18v2 Combine like terms: 1476v + -1476v = 0 26600 + -1476v + 18v2 = 0 + -18v2 + 18v2 26600 + -1476v + 18v2 = -18v2 + 18v2 Combine like terms: -18v2 + 18v2 = 0 26600 + -1476v + 18v2 = 0 Factor out the Greatest Common Factor (GCF), '2'. 2(13300 + -738v + 9v2) = 0 Ignore the factor 2.Subproblem 1
Set the factor '(13300 + -738v + 9v2)' equal to zero and attempt to solve: Simplifying 13300 + -738v + 9v2 = 0 Solving 13300 + -738v + 9v2 = 0 Begin completing the square. Divide all terms by 9 the coefficient of the squared term: Divide each side by '9'. 1477.777778 + -82v + v2 = 0 Move the constant term to the right: Add '-1477.777778' to each side of the equation. 1477.777778 + -82v + -1477.777778 + v2 = 0 + -1477.777778 Reorder the terms: 1477.777778 + -1477.777778 + -82v + v2 = 0 + -1477.777778 Combine like terms: 1477.777778 + -1477.777778 = 0.000000 0.000000 + -82v + v2 = 0 + -1477.777778 -82v + v2 = 0 + -1477.777778 Combine like terms: 0 + -1477.777778 = -1477.777778 -82v + v2 = -1477.777778 The v term is -82v. Take half its coefficient (-41). Square it (1681) and add it to both sides. Add '1681' to each side of the equation. -82v + 1681 + v2 = -1477.777778 + 1681 Reorder the terms: 1681 + -82v + v2 = -1477.777778 + 1681 Combine like terms: -1477.777778 + 1681 = 203.222222 1681 + -82v + v2 = 203.222222 Factor a perfect square on the left side: (v + -41)(v + -41) = 203.222222 Calculate the square root of the right side: 14.255603179 Break this problem into two subproblems by setting (v + -41) equal to 14.255603179 and -14.255603179.Subproblem 1
v + -41 = 14.255603179 Simplifying v + -41 = 14.255603179 Reorder the terms: -41 + v = 14.255603179 Solving -41 + v = 14.255603179 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '41' to each side of the equation. -41 + 41 + v = 14.255603179 + 41 Combine like terms: -41 + 41 = 0 0 + v = 14.255603179 + 41 v = 14.255603179 + 41 Combine like terms: 14.255603179 + 41 = 55.255603179 v = 55.255603179 Simplifying v = 55.255603179Subproblem 2
v + -41 = -14.255603179 Simplifying v + -41 = -14.255603179 Reorder the terms: -41 + v = -14.255603179 Solving -41 + v = -14.255603179 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '41' to each side of the equation. -41 + 41 + v = -14.255603179 + 41 Combine like terms: -41 + 41 = 0 0 + v = -14.255603179 + 41 v = -14.255603179 + 41 Combine like terms: -14.255603179 + 41 = 26.744396821 v = 26.744396821 Simplifying v = 26.744396821Solution
The solution to the problem is based on the solutions from the subproblems. v = {55.255603179, 26.744396821}Solution
v = {55.255603179, 26.744396821}
| 3(x-3)+4=2[-(x-5)-4(2x+1)] | | 4a^2+4a=-15 | | 4a^2+4=-15 | | 2x^1-1=0 | | 5x+60=5x | | 449/0.42= | | 16/5-20x=8 | | 2500+100x+x^2= | | log(5x+1)=1.2 | | y8/y3 | | 6+k^7=-2 | | 3x^3-5x-1=0 | | (36x^4+9)=0 | | 0.05(0.3x-0.06)= | | logx^729=3 | | 4n+5=2n+8 | | logx^36=2 | | 4y+49=27y+7 | | 4y+36=27y+7 | | 4.8x-4=4(1.2x-1) | | 4y+1636=27y+7 | | 8x-5x=x+8 | | 4y+25=27y+7 | | 4y+16=27y+7 | | y+2.4=7.33 | | 8+3n-5=9n+9-5 | | 2[2(3x-1)+3]-2(2x+5)=2(3x-3) | | 4+t^3=-3 | | s*6-43=83 | | 1+25=2x+20 | | 2[2(8x-1)+3]-2(2x+5)=2(3x-3) | | 2[2(83x-1)+3]-2(2x+5)=2(3x-3) |